
Captions set in a serif style
font such as Times, 18 to 24
size, italic style.

Duis autem vel eum iriure
dolor in hendrerit in vulputate
velit esse molestie consequat.

Introduction

 Since 2005/2006, processor manufacturers have
shifted their method of scaling performance from
increasing clock speeds to increasing the number of
cores. Processors in the future are predicted to have
hundreds of cores.

 The rise of multi- and many-core processing has
introduced new urgency to learning parallel program-
ming. Whereas typical machines today have two
cores, today’s graphics cards can already run hun-
dreds of threads in parallel. General-purpose comput-
ing on graphics processing units (GPGPU) broke into
the mainstream with the introduction of Nvidia’s CUDA
API in 2007.

 We focus on lab exercises at the undergraduate
level. Three undergraduate students and one faculty
member spent several weeks on CUDA lab exercises,
starting with the book by Kirk and Hwu [1] which was
published in February 2010. We describe our expe-
riences and lessons learned working with the book
and its accompanying labs. After this, we share our
experiences and suggestions and discuss possible
extended labs.

Background

 The CUDA programming model is an extension
of the C language. Programmers write an applica-
tion with two portions of code — functions to be exe-
cuted on the CPU host and functions to be executed
on the GPU device. The entry functions of the device
code are tagged with a __global__ keyword, and are
referred to as kernels. A kernel executes in parallel
across a set of parallel threads in a Single Instruction
Multiple Thread (SIMT) model. Since the host and
device codes execute in two different memory spaces,
the host code must include special calls for host-to-
device and device-to-host data transfers.

 When the device executes a kernel it runs within
a grid with parameters defined in terms of number of
blocks (up to two dimensions) and number of threads
per block (up to three dimensions), but totalling no
more than 512 threads per block. Streaming multipro-
cessors on the video card execute the thread blocks.
The graphics card we used was the Nvidia 9800GT,
which has 14 streaming multiprocessors, each of
which can execute 8 blocks or 768 threads at one
time for a maximum of 10,762 concurrent threads.

Lab Exercises

Lab 1: Matrix Multiplication
 The first lab involves implementing basic matrix
multiplication on the GPU. The supplied matrices are
only 16*16, so they can fit in a single block of threads.
It provides functions that handle the creation of matri-
ces and host-to-device as well as device-to-host
memory management. It does not provide the kernel
code or the code to invoke the kernel. Completing the
kernel code was a relatively easy process, given a
proper understanding of the Matrix structure and how
to access elements within the matrix in terms of a one-
dimensional array.
 We feel that, even though it is meant as an intro-
duction, the supplied code does too much work for
the student. Memory management is important and,
in a simple lab like this, not hard to understand. We
believe that students might benefit from familiarizing
themselves with this process from the beginning. This
lab took approximately two hours of reading, half an
hour to write the code and about two hours to debug
the program in order to get it working.

Lab 2: Reduction
 The second lab from the book is the implementa-
tion of a parallel reduction algorithm. The kernel is
given an array of 512 values and returns their sum.
The concept introduced here is thread diversion. A
naive implementation would cause threads in every
warp to diverge, decreasing performance substan-
tially. The following testimonial is also from Student 2.
 We feel that it is easy to understand how diver-
gent threads could be minimized and the lab itself is
easy to code. Because it is limited to 512 elements,
only one block is needed. The concepts behind the
lab were easy to understand. It took about an hour to
code, although we had more experience with CUDA
than a student assigned this lab would.

Experiences and Suggestions

 Due to their similar nature and their effectiveness
as introductory examples into CUDA, labs 1 and 3
are best paired together. The continuity of moving
between the two may help solidify the student’s under-
standing of the basic operations of memory allocation
and kernel execution.
 However, students may be more engaged with a
more results-driven problem. The current reward for
completing a lab is the command line stating “Test
PASSED” rather than “Test FAILED.” We feel that the
benefit of CUDA is lost in the lack of feedback. One
method we found interesting was the inclusion of tim-
ers to compare the CPU and GPU versions of the
solution (see chart). In lab 3, we were able to mea-
sure a speedup of a factor of 16 for large matrices
over the included CPU based matrix multiplier. We
believe that displaying the speed increase is effective
for motivating students.
 Visual feedback for correct solutions is another
means to motivate students. Getting a “Test PASSED”
message upon completion is not as satisfying as see-
ing something that the student creates. That is why we
propose supplementing lab 4 (convolution) with a lab
on the game of life (see [5]). Instead of looking at a 5
by 5 block of elements around the one being worked
on, the game of life looks at a 3 by 3. It has similar
challenges and would still need haloing to work effi-
ciently, but provides visual feedback.
 One additional idea for a lab could be the inclu-
sion of a simple ray tracer for those students familiar
with graphical concepts. The nature of ray traced 3D
graphics allows for pixels to be calculated indepen-
dently of each other. This project may make for a good
final or semester lab as it provides more opportunities
for parallel optimization as well as providing a graphi-
cal result as a reward for a successful implementation.

Nate Anderson, Jens Mache, William Watson
Lewis & Clark College, Portland, OR

Lab 3: Mapping and shared memory
 Lab 3 involves matrix multiplication like the first lab
but extends it by removing the size limit for input matri-
ces. This necessitates using more than one thread
block because a single block can hold up to 512
threads, or enough for a 32*16 matrix. The input matri-
ces must be broken up into manageable blocks for the
GPU to execute. This is the first lab which uses both
the thread index and block index It also introduces
shared memory, memory that all threads in a block
can read, which can increase the efficiency of the pro-
gram.
 This lab is a more effective tool for understanding
the structure of CUDA. Forcing the student to use mul-
tiple blocks makes the kernel invocation syntax more
clear. We felt that shared vs. global memory should be
explained to students and could even be taught sepa-
rately by having students create tiled matrix multiplica-
tion programs both with and without shared memory.

Lab 4: Convolution
 Convolution is important in image and signal pro-
cessing applications. The largest hurdle when pro-
gramming a convolution kernel is dealing with the
edge cases. In our 5x5 convolution lab, each element
uses the 24 elements around it, but if it is on or near
an edge, it must substitute zeroes for the missing ele-
ments. The solution is to load the elements operated
on by the block into shared memory but with a halo of
required elements around it.
 This lab is more challenging than those preceding
it. The solution code dedicated threads to loading the
halo elements, leaving them idle for the computation
itself. Our more efficient solution was much more dif-
ficult to code and debug. This lab took about an hour
to code and 3 hours to debug, along with an hour of
reading. The debugging time would have been cut
down if the errors in the program had not crashed the
computer when the it ran.

Acknowledgements & More Information
We would like to thank Ben Perkins for his participation in this
study.

To contact the researchers, email:
noa@lclark.edu, jmache@lclark.edu, wwatson@lclark.edu

This research will be presented SPLASH 2010.

References
[1] David Kirk and Wen-mei Hwu, “Programming Mas-
sively Parallel Processors: A Hands-on Approach”, Morgan
Kaufmann, 2010, http://www.elsevierdirect.com/morgan_
kaufmann/kirk/

CPU vs GPU Performance
This chart details the speed increase of the lab 3 GPU
matrix multiplier over its reference CPU implementation
for matrices of different sizes. The different lines rep-
resent the different block sizes into which the matrices
were divided.

We wanted to see how much faster the CUDA version
of matrix multiplication from lab 3 was than the CPU ver-
sion, so we wrapped a timer around each function. We
think that students might find a performance comparison
like this more interesting than a “Test PASSED” mes-
sage.

Learning CUDA: Lab Exercises and Experiences

